An overview of the impacts of invasive plant species on water resources and river systems in South Africa

Dr David Le Maitre, Mr Greg Forsyth, Dr Sebinasi Dzikiti and Dr Mark Gush
CSIR Natural Resources and the Environment, Stellenbosch
Outline

- Introduction
 - Water-use by plants
 - Riverine environments
- Findings
 - Water-use
 - Underestimation of riparian invasions
- Riparian invasions
- NEM:BA an opportunity?
Introduction

- The last national level assessment of impacts was published in 1998 (Versfeld study)
 - Total area invaded 10.08 million ha
 - Condensed (equiv. dense) area: 1.74 million ha
 - Reduction in mean annual runoff (MAR): 3 303 million m³/yr (6.67% of pre-development runoff)
- Based on single biomass model and reconnaissance mapping data
- Update needed
Water-use

- Dryland invasions vs non-dryland
 - Limited vs **not-limited** by water availability
- Riparian – floodplain
 - Flow regime - perennial to ephemeral
- Groundwater – non-riparian within rooting depth
 - Deep sands: Zululand & Cape coast, inland
 - Azonal vegetation types
 - Land types with deep soils
Riverine environments

- Traditional view: aquatic and associated systems as separate
- Developing view:
 - An integrated system
 - Longitudinal (hydro-geomorphology)
 - Lateral – linked to adjacent systems
 - Vertical – surface and sub-surface (hyporhoeos)
 - Temporal
 - Fluxes of water, sediment, OM, nutrients, organisms, ...
 - The whole is more than the sum of the parts (complex)
Riverine environments (cont)

- This complex interconnected environment
- Generates different suites of ecosystem services
 - Regulating sediment flux
 - Retarding flood flows and absorption of energy
 - Nutrient assimilation & flushing
 - Processing of chemicals & flushing
 - Regulation of harmful algae & microbes
 - Water, food, fibre & medicines
 - Habitat for biodiversity & basis of trophic networks
 - Recreation and amenity value
Findings
NIAPS mapping
Reduction (%)
Top 10 taxa

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Total condensed area (ha)</th>
<th>Reduction (million m³/yr)</th>
<th>Percent of total reduction</th>
<th>Reduction (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia mearnsii & allies</td>
<td>474 489</td>
<td>483.23</td>
<td>33.47</td>
<td>101.84</td>
</tr>
<tr>
<td>Pinus spp.</td>
<td>132 937</td>
<td>272.31</td>
<td>18.86</td>
<td>204.84</td>
</tr>
<tr>
<td>Eucalyptus spp.</td>
<td>273 573</td>
<td>217.37</td>
<td>15.06</td>
<td>79.46</td>
</tr>
<tr>
<td>Chromolaena odorata</td>
<td>101 992</td>
<td>100.29</td>
<td>6.95</td>
<td>98.33</td>
</tr>
<tr>
<td>Hakea spp.</td>
<td>36 344</td>
<td>72.20</td>
<td>5.00</td>
<td>198.67</td>
</tr>
<tr>
<td>Solanum mauritianum</td>
<td>40 413</td>
<td>58.20</td>
<td>4.03</td>
<td>144.00</td>
</tr>
<tr>
<td>Lantana camara</td>
<td>32 328</td>
<td>40.29</td>
<td>2.79</td>
<td>124.61</td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>54 679</td>
<td>28.95</td>
<td>2.01</td>
<td>52.95</td>
</tr>
<tr>
<td>Populus spp.</td>
<td>58 082</td>
<td>26.89</td>
<td>1.86</td>
<td>46.29</td>
</tr>
<tr>
<td>Salix babylonica</td>
<td>37 555</td>
<td>22.48</td>
<td>1.56</td>
<td>59.86</td>
</tr>
</tbody>
</table>
Summary

- Total condensed area 1.50 (1.3-1.7) million ha
- Total reduction 1 444 (1 304-1 598) mill m³/yr (2.88% of MAR)
- Equivalent to 97 mm/yr
- Most invasions in E Cape, KZN, Mpumalanga
- Most affected Biome:
 - Forest – issues of data resolution
 - Grasslands – greatest volume
 - Indian Ocean Coastal Belt – highest percentage
Underestimation of impacts

- Riparian invasions comprise only:
 - 4.6% of *A. mearnsii* vs 20%?
 - 4.4% of *Eucalyptus* vs 50%?
 - 5.2% of *Populus* vs 80%?
 - 5.5% of *Salix* vs 80%?

- Adjusting these percentages adds 1,000 mill m3/yr (70%)
Riparian invasions
Riparian mapping

Primary catchments

NIAPS Riparian
% cover

0

0.1 - 100
Summary

- Riparian invasions
 - Pervasive (>30% of rivers)
 - Water impacts per ha 1.5-2.0 times dryland invasions
 - Extend down perennial river systems into arid zone
 - Degrade and displace native species & ecosystem processes
 - Alter sediment dynamics
 - Typically channel incision (disconnecting)
 - Complicates rehabilitation
 - Affect many NFEPA A, AB and B systems
 - Alter ecosystem generation & benefits
NEM:BA an opportunity

- The new legislation is not tied to agriculture
- The new legislation focuses on impacts on:
 - Biodiversity
 - Ecosystem integrity
- Impacts on river conservation priorities?
- Give emphasis to riparian invasions
- Prioritise riparian clearing
 - Biodiversity considerations
 - Ecosystem services
Acknowledgements

- Working for Water for funding this study
- My co-authors for their inputs
- You – for listening