The extent at which ecosystem services align with biodiversity planning tools

A case of uMngeni catchment

Smiso Bhengu, Prof. M. Rouget & Dr B Egoh
INTRODUCTION

• Conservation planning is a rapidly evolving field whose goal is to minimise the loss of biodiversity through the selection of priority areas for conservation action.

• Ecosystem services are the conditions and processes through which natural ecosystems and the species that make them up sustain and fulfil human life
AIMS

• We assess the role that different conservation planning outputs play in safeguarding ecosystem services

• The study assessed whether conserving biodiversity pattern at different scales would also maintain ecosystem services
OBJECTIVES

• To what extent do ecosystem services align with NFEPA, CBAs, SDFs & Threatened Ecosystems?

• Are biodiversity conservation areas with the aim of preserving biodiversity important to maintain ecosystem services?
STUDY AREA

Description

- It has two major urban centres within KZN province
- It has a mixture of land use (rural, urban, plantations, etc.)
- uMngeni catchment has total area 441800 ha
METHODOLOGY

• We used three approaches to achieve our objectives:

1) Mapping important areas for ecosystem services delivery

2) Spatial alignment of ecosystem services with biodiversity planning tools

3) Time series analysis of the loss of important areas for ecosystem services and protected areas.
Important Areas for ES delivery

• There are different approaches and concepts to map ecosystem services, this study linked land cover with ecosystem services by assigning value to each land cover type based on their capacity to deliver that particular service (Burkhard et al. 2011, O’Farrell et al. 2012).

• These values range from
 – 0 = no relevant capacity,
 – 1 = low relevant capacity,
 – 2 = relevant capacity,
 – 3 = medium relevant capacity,
 – 4 = high relevant capacity and
 – 5 = very high relevant capacity
Spatial alignment of ES with biodiversity tools

• Important areas for ecosystem services delivery were compared with important areas for biodiversity as identified by biodiversity planning tools.

• The spatial alignment was done using ArcGIS software by overlaying priority areas identified by biodiversity planning tools with areas which have been mapped as important for ecosystem services delivery.
Time series analysis (ES vs Protected Areas)

• We analysed the role played by protected areas in conserving areas important for ecosystem services

• From 1970 to 2020, we assessed protected areas and calculated for each time step, the proportion of areas important for ecosystem services included in protected areas
RESULTS

Important Areas for ES delivery in uMngeni catchment
Spatial alignment

<table>
<thead>
<tr>
<th>Spatial scale</th>
<th>Biodiversity Planning Tools</th>
<th>Total area of Important Ecosystem services areas under different planning tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>National</td>
<td>National Freshwater Ecosystem Priority Areas</td>
<td>64925 ha</td>
</tr>
<tr>
<td></td>
<td>Threatened Ecosystems</td>
<td>201180 ha</td>
</tr>
<tr>
<td></td>
<td>National Protected Areas Expansion Strategy</td>
<td>26449ha</td>
</tr>
<tr>
<td></td>
<td>National Protected Areas</td>
<td>9346ha</td>
</tr>
<tr>
<td>Provincial</td>
<td>Critical Biodiversity Areas</td>
<td>96757ha</td>
</tr>
<tr>
<td>Municipalities</td>
<td>Spatial Development Frameworks</td>
<td>73576ha</td>
</tr>
</tbody>
</table>
Time series analysis of protected areas and lost of ecosystem service areas
CONCLUSION

• Areas important for ecosystem service delivery can co-occur with areas important for biodiversity (positive correlation)

• An opportunity for integrated planning (ecosystem service inclusion within conservation plans)

• This is an opportunity of using ecosystem services in supporting biodiversity conservation
THANK YOU
SMISO BHENGU
CONTACT: 0312024095
EMAIL: s.bhengu@sanbi.org.za