Assessing and Mapping Ecological Condition: Session Introduction

Mandy Driver
m.driver@sanbi.org.za
Overview

• Why is spatial data on ecological condition important?
• Proposed ecological condition classes
• Some conceptual issues
Spatial data on ecological condition is fundamental for:

- Biodiversity assessment
 - e.g. ecosystem threat status
- Monitoring the state of biodiversity
- Biodiversity planning (prioritisation)
- Ecosystem accounting
Maps of ecological condition (NBA 2011)

Terrestrial (based on land cover)

Rivers

Wetlands

Marine & coastal
Biodiversity plans

- Only sites in **good ecological condition** are selected as CBAs*
- Only sites in **at least fair ecological condition** are selected as ESAs
Ecosystem accounting

Physical accounts

1. Ecosystem extent (by ecosystem type)
2. Ecosystem condition (by ecosystem type)
3. Ecosystem services supply (by ecosystem type)
4. Ecosystem services use and benefits (economic units – incl. h/holds)

Monetary accounts

1. Ecosystem services supply and use values
2. Ecosystem monetary asset values (by ecosystem type)
3. Integrated accounts
 - Combine presentations
 - Extended supply & use table
 - Sequence of sector accounts
 - Balance sheets

Proposed ecological condition classes

<table>
<thead>
<tr>
<th>High-level classes</th>
<th>Detailed classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>Natural</td>
</tr>
<tr>
<td></td>
<td>Near-natural</td>
</tr>
<tr>
<td>Fair</td>
<td>Moderately modified (e.g. over-grazed)</td>
</tr>
<tr>
<td>Poor</td>
<td>Severely modified (e.g. heavily eroded, wheat field, timber plantation)</td>
</tr>
<tr>
<td></td>
<td>Irreversibly modified (e.g. parking lot, mine)</td>
</tr>
</tbody>
</table>

Lost?
Aspects of biodiversity

After Noss 1990
Proposed ecological condition classes

<table>
<thead>
<tr>
<th>High-level classes</th>
<th>Detailed classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>• Composition, structure and function still intact</td>
<td>Natural</td>
</tr>
<tr>
<td>• Composition, structure and function still intact</td>
<td>Near-natural</td>
</tr>
<tr>
<td>Fair</td>
<td></td>
</tr>
<tr>
<td>• Composition and structure altered</td>
<td>Moderately modified</td>
</tr>
<tr>
<td>• Basic ecological function still intact</td>
<td>“threshold of no return”</td>
</tr>
<tr>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>• Composition, structure and function all severely altered/lost</td>
<td>Severely modified</td>
</tr>
<tr>
<td></td>
<td>Irreversibly modified</td>
</tr>
</tbody>
</table>
Some conceptual issues

• Distinguish between
 – Reference condition
 – Baseline condition
 – Desired condition

• Condition is not the same as “health”

• Distinguish between “different” and “degraded”
Needs going forward

• Review of existing work
• Where do we need to tighten up our thinking based on existing work?
• Where do we need research?
• How do we put in place systems for repeat assessments over time?

→ National strategy for advancing assessment of ecological condition?

“Tricky, but not intractable”