Key achievements and progress towards National Biodiversity Assessment 2018

Carol Poole (SANBI), Andrew Skowno (SANBI), Fahiema Daniels (SANBI), Heidi van Deventer (CSIR), Lindie Smith-Adao (CSIR), Namhla Mbona (SANBI), Lara van Niekerk (CSIR), Kerry Sink (SANBI), Domitilla Raimondo (SANBI), Wendy Foden (Stellenbosch University), Sebataolo Rahlao (SANBI), Krystal Tolley (SANBI), Mandy Driver (SANBI)
What is the NBA?

Collaborative effort to synthesise the best available science on SA’s biodiversity to inform decisions in a range of sectors.
But also:
- build capacity
- coordinate, plan and share work within SANBI
- promote alignment & collaboration between partner institutions

<table>
<thead>
<tr>
<th>REALMS</th>
<th>THEMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrestrial</td>
<td>Describe biodiversity</td>
</tr>
<tr>
<td>Freshwater</td>
<td>Describe pressures on biodiversity and their trends over time</td>
</tr>
<tr>
<td>(wetlands & rivers)</td>
<td>Assess the status of biodiversity</td>
</tr>
<tr>
<td>Estuarine</td>
<td>Determine the trends in biodiversity status over time</td>
</tr>
<tr>
<td>Coastal</td>
<td>Describe the range of responses to biodiversity pressures</td>
</tr>
<tr>
<td>Marine</td>
<td>Describe the range of benefits of biodiversity</td>
</tr>
</tbody>
</table>

- Policy
- Spatial Planning
- Prioritising Action
- National Reporting
- International Reporting
Timeframes

<table>
<thead>
<tr>
<th>Date</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>Initiation and planning; identification of key programs of work; identify partners and contributors and set up processes and governance</td>
</tr>
<tr>
<td>2016</td>
<td>Implement key programs of work and data collection</td>
</tr>
<tr>
<td>2017</td>
<td>Finalise ecosystem classification and mapping</td>
</tr>
<tr>
<td></td>
<td>Data collection and analysis</td>
</tr>
<tr>
<td></td>
<td>First Order Draft of Synthesis Report – mid 2017</td>
</tr>
<tr>
<td>2018</td>
<td>Analyses and drafting of reports</td>
</tr>
<tr>
<td></td>
<td>Second Order Draft of Synthesis Report – June 2018</td>
</tr>
<tr>
<td></td>
<td>Final Draft of Synthesis Report – December 2018</td>
</tr>
<tr>
<td>2019</td>
<td>Publication & launch of final reports (May / June 2019)</td>
</tr>
<tr>
<td></td>
<td>Popular report towards end of year</td>
</tr>
</tbody>
</table>

- Name of assessment = year of assessment
Major goals for NBA 2018

- Invest further in national *ecosystem classification*
- Improve assessment of *ecosystem condition*
- **Trend analysis** of habitat loss (and *Ecosystem* Threat Status) using times series Land Cover
- **Trend analysis** of *species* threat status (Red List Indices)
- Address *genetic* diversity
- Expand the *benefits* of biodiversity aspects to “make the case” for biodiversity and NBA findings
- Structure the *responses* well
- Explain **Key Biodiversity Areas** 🔄
- Publish as much as possible in peer-reviewed journals
Ecosystem classification and mapping

Ecosystem Classification Committees (ECCs) all functioning well

NECC: share lessons, over-arching guidance, ensure integration
Condition assessments

- Terrestrial: land cover
- Marine: uses cumulative impact mapping approach; has several projects on the go to ground-truth condition

<table>
<thead>
<tr>
<th>Pressures</th>
<th>Few pressures, low intensity</th>
<th>Range of pressures, moderate intensity</th>
<th>Many pressures, high intensities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>Good</td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Expected biodiversity impact</td>
<td>Pattern and process intact</td>
<td>Some ecosystem degradation</td>
<td>Loss of biodiversity pattern and disruption of ecological processes.</td>
</tr>
</tbody>
</table>
Trend analyses

Land Cover Change (1990-2013)

LC_CHANGE

- Primary natural areas
- Secondary natural areas
- Natural habitat lost pre 1990
- Natural habitat lost 1990-2013
Species work

- Improved data management
- Pressures on species
- Red List assessments
- Red-List Index for selected taxa - trends over time (terrestrial and freshwater)
- New indicator under development

[Protection Level of species] (later this morning)
Genetics Technical Report

• 2: **Review and synthesis.**

• 3: **High level indicators for tracking the status of ‘genetic’ diversity**
 Use high level indicators (PD, ED) on a large spatial and taxonomic scale. Trends relating to drivers of change/impacts on these metrics over time (e.g. protected area expansion, landcover changes, climate change).

• 4: **Conservation, taxonomy, species status informed by genetics**
 Create diversity layers ("heat maps") for evolutionary significant units; prioritise landscape protection using genetic diversity as a dimension. Highlights dangers of not knowing correct taxonomy.

• 5: **Monitoring trends in genetic diversity for priority species**
 Examine temporal trends in genetic diversity of wild populations of target species and propose indicators for monitoring trends and status.

• 6: **Risks and impacts to genetic diversity, pressures, and benefits**
 Cover risks and impacts to biodiversity and genetic diversity relating to: wild relatives of domestic species, invasive spp and hybridisation, game species and translocations/hybrids/captive bred. This chapter is a review of the risks and won’t include analyses.
Benefits of biodiversity clusters

1. Biodiversity contributes to **food security** (indigenous food, commercial production)
2. Biodiversity provides **medicine** (medicinal plants)
3. Biodiversity assets are vital for the **wildlife economy** (hunting and game ranching)
4. Biodiversity provides **employment**
5. Biodiversity stimulates **innovation** (biomimicry, bioprospecting, horticulture, crop wild relatives)
6. Biodiversity assets are vital for South Africa’s **tourism economy**
7. **Ecological infrastructure** supports water security, disaster protection, and climate change adaptation
8. Biodiversity supports **well-being** (everyday life)
10. Involving **citizens** in biodiversity science
11. **Careers** in biodiversity
Responses

3-way action plan

These are our key responses at a high level

Avoid further loss / maintain in good condition
Protect
Restore

ETS, SppTS
- Are ecosystem types becoming more threatened?
- Rate of habitat loss in TEs compared with background rate of loss (outside PAs)
- Are species becoming more threatened? (Red List Index)

EPL, SppPL
Effectiveness of the PA network for representation of ecosystem types and species

Others:
Ability to respond – science capacity and expenditure on biodiversity
Image Competition

Images of species, ecosystems, people in and/or using biodiversity, landscapes showing a variety of uses adjacent to natural habitats, pressures on biodiversity shown in-situ, multiple uses of nature, biodiversity features...

LUCKY DRAW PRIZES FROM NOW UNTIL END 2018

images@sanbi.org.za