Developing the field of Biodiversity informatics to meet sustainable development challenges for fisheries in the face of climate change in southern Africa

Fatima Parker-Allie

15 August 2017
Background

- NSI and Biodiversity Informatics

- Developing a Centre for Biodiversity Information Management

- As part of this broader context, expand on a research project which looks at “Developing the field of biodiversity informatics in South Africa through the use of primary data and informatics tools to address key biodiversity challenges”
 - Curriculum, research priorities
 - Data management
 - Niche Modelling
South Africa’s prospects for improved competitiveness and economic growth rely, to a great degree, on science and technology.

Its ten-year innovation plan and bioeconomy strategy, which is built on the foundation of the National System of Innovation (NSI), recognizes that the country needs to take further steps to becoming a knowledge-based economy in order to meet its developmental objectives.

Knowledge is the basic form of capital for innovation (knowledge generation, accumulation, and exploitation). Economic growth is driven by innovation, and the key driver for innovation is “high-end” human capital.

A significant strengthening of the production of human capital and the institutional environment for knowledge generation is necessary, in collaboration with international partners.

This especially in light of the fact that today, a growing percentage of the wealth in the world’s largest economies is created by knowledge-based industries that rely heavily on human capital and technological innovation.
In SA, there is a clear need to increase our science output & to move to a knowledge based economy.

The graph above shows a correlation between the scientific output and the wealth intensity of a country.

Thus, if we as a country wish to increase our economic growth, we need to invest in an increase in research capacity and output.

Citation intensity is used as a proxy for science and technology intensity.
SANBI as a Biodiversity Informatics Institution

- SANBI is a dedicated national biodiversity institution that bridges science, knowledge, policy and implementation. SANBI’s value chain operates across the divisions.
- As a knowledge-based organisation, biodiversity information is the key resource which drive research and innovation, inform planning and policy development processes, informs decisions and is the basis to evaluate progress and impact.
- It is therefore important that our biodiversity information is managed as a strategic asset that will leverage shared value to South Africa in supporting sustainable decisions towards the broader national developmental objectives.
In SA, as in other parts of the world, BDI is a young field, lies at the nexus of a number of disciplines. The broad application of information science and computational tools to the management and analysis of biodiversity data characterizing species’ occurrences, taxonomic characters, and multimedia and image data, have led to the development of the emerging field of biodiversity informatics.

Thus, biodiversity informatics deals with the interrelated challenges of collection, collation, integration, analysis and prediction, as well as the dissemination of data and information related to the biotic resources of the Earth.

The development of key software tools and the establishment of GBIF were major steps towards enabling sharing the world’s biodiversity data via the Internet.
GBIF was established in 2001 as a “mega-science” initiative & shares > 780 m records

NEW: Projects, surveys, expeditions: **sample-based data**

Types of Data Served Through GBIF

1. **Occurrence data** – from specimens & observations
2. **Sample based data** – from ecological monitoring and assessments
3. **Checklists** – names
4. **Metadata** – providing structured descriptions of datasets - can result in publication of data papers

5 Strategic Objectives

- **Priority 1 – Deliver Relevant Data**
- **Priority 2 – Improve Data Quality**
- **Priority 3 – Fill Data Gaps**
- **Priority 4 – Enhance Biodiversity Informatics Infrastructure**
- **Priority 5 – Empower Global Access**
Establishment of SABIF

- South Africa became a country participant in GBIF in 2003

- Here, a decision was made by the (DST) that being a member of the GBIF would assist South Africa in meeting its own need to
 - develop a stronger network of biodiversity informatics professionals,
 - to develop the science of biodiversity informatics,
 - to expedite the dissemination of biodiversity data
 - And to share data using common data standards and tools
• Thus SANBI-GBIF plays a critical role in the BDI landscape in SA including data sharing and developing BDI as a field of science.

• Being such a new and dynamic field, there are enormous challenges in recruitment, training and retention of BIM personnel, for the mobilisation, management, coordination and use of biodiversity information for key conservation and biodiversity outcomes such as IPBES and CBD Aichi targets that require data to meet the science-policy and decision making needs.

• This critical lack thus demands broad efforts to build human capital in the field.

• As an organisation SANBI has a number of key drivers in place that lays the foundations for the development of a Centre for Biodiversity Informatics, and provides a growth path for this relatively new field of science.
Key Drivers towards a Vision for a Centre for BIM

Foundational Biodiversity Information Programme

Biodiversity Research Grants
SANBI-GBIF, IBOL, EOL

Biodiversity Information Management Directorate
SANBI-GBIF
Biodiversity Advisor
Integrated Architecture

Natural Science Collections Facility

Centre for BIM

BIM Centre
BDI Curricula
5 Year Strategy for BIM
Curriculum Development
Postdocs
This project sets out to develop the field of biodiversity informatics in SA through a three-phased approach

1. Develop a conceptual framework for BDI including an extended BIM Honours curriculum.

2. Address the management and improvement of biodiversity data toward achievement of full fitness for use in research applications;

3. Explore a research theme that demonstrates the use and relevance of GBIF-mediated data,
 • utilizing niche models based on primary biodiversity data to describe current and predict future distributions of fish species under different climate scenarios in the marine realm;
1. Developing the field of BDI

- Developed a **5 year strategy** for the establishment of a **Centre for BIM**
- Engagements with UWC, Sol Plaatjes and UCT are ongoing with regards to course implementation and research
- A curriculum framework has been developed, for an extended Honours course – and will work towards engaging with Universities for uptake & implementation (engagements at nat/reg/global level)
- SANBI has funded 2 Postdocs (UWC/UCT), and will be funding a 3rd soon
- Engagements with the DST/NRF and FBIP Steering Committees
- Development of a TOR for a Research Chair in BDI
2. The management and improvement of biodiversity data towards full fitness for use in research applications

- Distribution data for fish species originating from Southern Africa were obtained from the Global Biodiversity Information Facility (www.gbif.org).

- The initial GBIF mediated dataset included over 2.6m records including both freshwater & marine fish species.
Number of Records by Institution

MCM: Linefish Dataset (1985-2005)
MCM: Demersal Surveys (1986-1995)
2. Data Management

- This significant dataset was split, using the programme “R”, so that analysis could be restricted to the marine species in Sn Africa.
- The resultant digitally accessible dataset contained \textbf{1 856 727} fish occurrence records.
- The Nansclim dataset was also used, and represents data collected through a regional collaboration between SA, Angola and Namibia. This was included to augment the GBIF dataset.
For data shared from *diverse* sources, despite the best intentions, errors of consistency and of detail arise and persist in data sets, particularly in the geospatial dimensions of the data. “*Fitness for use*” is thus a major consideration in BDI.

Significant effort to assuring the fitness for use of data:
- correctness of *taxonomic* determinations (authority lists checked – GBIF,EOL,WORMS; duplicates, typos)
- *geospatial* data - we look at variations in scale
- Time - here we look at variation in day/month/year and data leaks at this level
2. Data management: Taxonomy

- The combined dataset (GBIF + Nansclim) included 4276 unique combinations of species names.
- The species names field was linked to Fishbase Database through SQL, so that additional relevant ecological/conservation data including the importance category could be connected.
- Species names were checked for correctness by cross referencing against the GBIF, EOL, WORMS & the Catalogue of Life databases. The OBIS TaxaMatch tool was also used to check spelling and clarify taxonomy.
- Species with less than 100 records were removed, leaving a dataset with 750 species.
- This was further filtered to include species which occurred at <200m depth, leaving a total of 434 species to consider for Niche Modelling.
- A further comparative assessment was conducted between the original species names and Fishbase for unmatched species.

![Commercial Relevance Chart]

Commercial Relevance

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>118</td>
</tr>
<tr>
<td>Highly commercial</td>
<td>32</td>
</tr>
<tr>
<td>Minor commercial</td>
<td>81</td>
</tr>
<tr>
<td>Of no interest</td>
<td>59</td>
</tr>
<tr>
<td>Subsistence</td>
<td>15</td>
</tr>
<tr>
<td>Blank</td>
<td>129</td>
</tr>
</tbody>
</table>
Digital Accessible Knowledge Leaks

Usable Information

INFORMATION LOSS

Sharing and Integration

Adherence to Standards

Data Publishing

Georeferencing

Digitization

Data Cleaning

Work to do

Existing Specimens and Observational Records

Taxonomic Determination
3. Niche Modelling in the Marine Environment

- In the last few decades, the rise of powerful new statistical models and GIS tools, have led to the development of predictive modelling of ecological niches & the projection of likely potential distributions of species.

- In SA, NM approaches have been applied to terrestrial species (Coetzee et al. 2009, Foden et al. 2007) especially IAS (Richardson et al. 2000, Rouget et al. 2004, Parker-Allie et al. 2009), but rarely to species in marine environment.

- At the global level, however, Wiley et al. (2003) has applied NM to marine species, demonstrating its usefulness in predicting geographic distributions of littoral and benthic fish.

- Cheung et al. (2009) reviewed literature on effects of anthropogenic climate change on distributions and abundances of marine fish and invertebrates, and found no South African studies published at that time.

- A first South African marine application (Owens et al. 2012) to look at the habitat suitability of Coelacanth species and more recently James NC et al (2016) used a modeling approach to look at Grey mullet (Mugilidae) as possible indicators of global warming.

3. Niche Modelling

• This study aims to **model the distribution** of approximately **20 taxonomically** and **physiologically** different Southern African fish species and **project future changes and shifts in their distribution ranges** with climate warming.

• A bioclimatic envelop model will be applied

• Assess the impacts of climate change on selected **commercially exploited species** that are of particular relevance to food security in the country
Species which have been selected, belong to a **broad range of families** including pelagic and demersal species, of commercial relevance – 2 Sciaenidae, 2 Sparidae and 2 Carangidae (*Argyrosomus inodorus*- silver kob; *Atractoscion aequidens* -Geelbek, seabreams & horse mackerel)

Two of the most highly relevant commercial species in Southern Africa include **Snoek** and **Hake**. These will not be included in the modelling analysis as they are very widespread species, likely to spawn outside SA waters. The same applied to the Tuna species.

We also strategically selected **Sardinops sagax** (small pelagic sardine) for its roll in food security.

Also selected a shark species, **Galeorhinus galeus** –Tope Shark

We excluded species which had very low numbers of records, from the analysis due to cut-off thresholds for modelling.
Climate Projections

- Here we aim to use the Representative Concentration Pathways (RCP’s), which were defined in the latest IPCC Annual Report AR5; (a newer approach), replacing the Special Report on Emission Scenarios – AR3 & AR4

- RCPS - A selected number of emissions scenarios of GHG were published, which defines a set of possibilities of what the future world might look like.

- Variables that create the ES include:
 - population increase; Energy choices – solar, wind, coal; economic growth (the faster the economies grow – more energy they need and more fossil fuels they likely to use; Technological innovation (which people think will save us by removing CO2 from the air)
Observed changes in the Climate System

- The atmosphere and the **ocean has warmed**,
- The amount of **snow and ice** have diminished
- Sea level has risen &
- Greenhouse gases have increased

The last three decades has become successively warmer, than any preceding decade since 1850.

- The ocean absorbs 93% of the increased heat content, compared to 3% heat energy going to warming land surface temp.
- More than 60% of the heat energy is stored in the **upper ocean (0-700m)**. Between 1955-2010 the worlds oceans, to a depth of 2000 meters have warmed on average by **0.09°C**
- This warming is expected to **negatively impact fisheries**, with indications of tropical fish stocks migrating to cooler water.
Biodiversity information has a potential role in supporting many of the Sustainable Development Goals.

In a world that counts the United Nations describe data as the lifeblood of decision making and the raw material for accountability. Thus, good and accurate data is the key building blocks for analysis, in support the 17 Sustainable Development Goals.

Ultimately, we need to ensure that the data which supports our analysis, are mobilized and priority datasets are available to support analysis for amongst other things, natural capital accounting; and sectors such as energy, climate, water, food, infrastructure, mining and extractives as well as trade and investment.
THANK YOU

Fatima Parker-Allie – F.Parker@sanbi.org.za