Root fungal diversity associated with three Disa species

By Nondumiso Khambule (MSc)

Supervised by Prof J. Dames
Co-supervised by Prof C. Peter
Introduction

Orchid mycorrhizas are mutualistic interactions between fungi and members of the Orchidaceae (Dearnaley 2007).

Orchids have ‘dust seeds’, that are very small (0.3-14 µg) consisting of minute embryos that lack endosperm and have few reserves (Burgeff 1936; Arditti & Ghani 2000).

The presence of fungi assist in germination of seeds (Tsutsui & Tomita 1986; Clements 1988; Rasmussen et al 2009).

Orchids are highly depended on the provision of nutrients by mycorrhizal fungi during early seedling development (Smith & Read 2008).

In adult orchids, the mycorrhizal associations are important for mineral nutrition (Gebaur and Meyer 2003; Smith & Read 2008; Brundrett 2009).

Orchid mycorrhizal (OM) research in South Africa has received little attention.
Aims and Objectives

Objective:

– To identify the mycorrhizal fungi interacting with *Disa bracteata*, *D. cornuta* and *D. polygonoides*

Aims:

– Confirm mycorrhizal colonization of roots
– Isolate and identify associated root fungi (culture dependent approach)
– Assess root fungal biodiversity using culture independent approach
Mycorrhizal colonization

- Roots were cleared and stained, observed microscopically using light microscope (Kristiansen et al 2004)
- Mycorrhizas produce intracellular coils called pelotons within roots cells (Smith and Read 2008)
- All three Disa species were colonized by mycorrhizal fungi
Fungal isolates

- Root pieces were surface sterilized and plated on various media
- Single fungal colonies were sub-cultured and molecular identified
- PCR was conducted using ITS1F and ITS4 primers (Gardes and Bruns 1993)
- Purified PCR products were sent for Sanger sequencing
Fungal Isolates

- Chaetomium aureum strain 100%/96%/0.0
- Penicillium sp. 99%/98%/0.0
- Trichoderma sp. 100%/93%/0.0
- Talaromyces radicus 96%/98%/0.0
- Oidiodendron sp. 99%/99%/0.0
Diversity

- Roots were surface sterilized and stored in RNA later
- DNA was extracted, PCR was conducted using ITS1F and ITS4 primers (Gardes and Bruns 1993)
- Purified PCR products were cloned using pGEM T-Easy Vector
- Plasmids were sent for Sanger sequencing
- Sequences were aligned and submitted for comparison to GenBank (https://www.ncbi.nlm.nih.gov/Genomes/index.html) and UNITE (https://unite.ut.ee/analysis.php)
<table>
<thead>
<tr>
<th>Orchid species</th>
<th>Clones</th>
<th>Description</th>
<th>Query cover in Percentage (%)</th>
<th>Identification Percentage (%)</th>
<th>E-value</th>
<th>Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disa cornuta</td>
<td>DC1</td>
<td>Epicoccum nigrum</td>
<td>93%</td>
<td>99%</td>
<td>0.0</td>
<td>MH290364.1</td>
</tr>
<tr>
<td></td>
<td>DC2</td>
<td>Tulasnella sp.</td>
<td>78%</td>
<td>96%</td>
<td>0.0</td>
<td>JX514389.1</td>
</tr>
<tr>
<td></td>
<td>DC3</td>
<td>Fungal sp. strain</td>
<td>91%</td>
<td>99%</td>
<td>0.0</td>
<td>KU839098.1</td>
</tr>
<tr>
<td></td>
<td>DC4</td>
<td>Helotiales sp.</td>
<td>88%</td>
<td>100%</td>
<td>0.0</td>
<td>KX440158.1</td>
</tr>
<tr>
<td></td>
<td>DC5</td>
<td>Uncultured fungus</td>
<td>89%</td>
<td>98%</td>
<td>0.0</td>
<td>KT957785.1</td>
</tr>
<tr>
<td>Disa polygoniodes</td>
<td>DP1</td>
<td>Terfezia boudieri</td>
<td>29%</td>
<td>100%</td>
<td>2e-79</td>
<td>LT718229.1</td>
</tr>
<tr>
<td></td>
<td>DP2</td>
<td>Uncultured fungus</td>
<td>93%</td>
<td>99%</td>
<td>0.0</td>
<td>HQ850140.1</td>
</tr>
<tr>
<td></td>
<td>DP3</td>
<td>Uncultured Ascomycota</td>
<td>92%</td>
<td>95%</td>
<td>0.0</td>
<td>JX998699.1</td>
</tr>
<tr>
<td></td>
<td>DP4</td>
<td>Tulasnella calospora</td>
<td>92%</td>
<td>98%</td>
<td>0.0</td>
<td>GU166421.1</td>
</tr>
<tr>
<td></td>
<td>DP5</td>
<td>Uncultured Helotiales</td>
<td>92%</td>
<td>99%</td>
<td>0.0</td>
<td>JX317118.1</td>
</tr>
<tr>
<td>Disa brecteata</td>
<td>DB1</td>
<td>Sordariales sp.</td>
<td>89%</td>
<td>99%</td>
<td>3e-130</td>
<td>KY228640.1</td>
</tr>
<tr>
<td></td>
<td>DB3</td>
<td>Uncultured ectomycorrhizal fungus</td>
<td>71%</td>
<td>80%</td>
<td>8e-74</td>
<td>FR731633.1</td>
</tr>
<tr>
<td></td>
<td>DB4</td>
<td>Uncultured Agaricales</td>
<td>91%</td>
<td>99%</td>
<td>0.0</td>
<td>FJ553698.1</td>
</tr>
<tr>
<td></td>
<td>DB5</td>
<td>Uncultured fungus</td>
<td>92%</td>
<td>99%</td>
<td>0.0</td>
<td>LC271287.1</td>
</tr>
</tbody>
</table>
Conclusion

- *D. polygonoides* and *D. cornuta* are associated with *Tulasnella* (Basidiomycota) a known orchid mycorrhizal fungus
- *D. breceata* associates could not be sufficiently identified, but further cloning is being done using more orchid specific primers
- *Oidiodendron sp.* Isolated from roots is a known ericoid mycorrhizal fungus (Ascomycota) and may be associating with orchids, this requires further investigation.

Acknowledgments

– Colleagues from Mycorrhizae Research group
– NRF
– NRF-FBIP small grant funding (Prof Dames)
Thank you